
1

New developments in cryptology

Prof. Bart Preneel

COSIC

Bart.Preneel(at)esatDOTkuleuven.be

http://homes.esat.kuleuven.be/~preneel

© Bart Preneel. All rights reserved

February 2010

2

Outline

• 1. Cryptology: concepts and algorithms

• 2. Cryptology: protocols

• 3. Public-Key Infrastructure principles

• 4. Networking protocols

• 5. New developments in cryptology

• 6. How to use cryptography well

• 7. Hash functions

3

Outline

• Block ciphers/stream ciphers/MAC algorithms

• Modes of operation and authenticated

encryption

• How to encrypt using RSA

• Algorithm: secure design and implementation

• Obfuscation

• SPAM fighting

5

Block ciphers: Keeloq
• Microchip Inc algorithm, designed in the 1980s

• Allegedly used in large % of the cars for car locks,
car alarms

• Block cipher with 32-bit blocks, 64-bit keys and
528 simple rounds

• Leaked on the internet early 2007

6

Block ciphers: Keeloq (2)

[Bogdanov07] Car key = Master key + Car ID

[Biham-Dunkelman-Indesteeghe-Keller-Preneel07]:

– 1 hour access to token + 2 days of calculation

[Eisenbarth-Kasper-Moradi-Paar-Salmasizadeh-Manzuri
ShalmaniPaar 08]

– Side channel attack allows to recover master key in
hopping mode

in 2010 cryptographers will drive expensive cars

3-DES: NIST Spec. Pub. 800-67

(May 2004)

• Single DES abandoned

• two-key triple DES: until 2009 (80 bit security)

• three-key triple DES: until 2030 (100 bit security)

DES Clear

text
DES-1 DES

1 2 3

%^C&

@&^(

Highly vulnerable to a

related key attack

AES (2001)
K

e
y
 S

c
h

e
d

u
le

round

.....

round

round

round

S S S S S S S S S S S S S S S S

S S S S S S S S S S S S S S S SMixColumns MixColumns MixColumns MixColumns

• Block length: 128 bits

• Key length: 128-192-256

bits

A $ 10M machine that cracks a DES

key in 1 second would take 149 trillion

years to crack a 128-bit key

AES variants (2001)
• AES-128

• 10 rounds

• sensitive

Light weight key schedule, in particular for the 256-bit version

K
e

y
 S

c
h

e
d

u
le round

.....
round

plaintext

K
e

y
 (

1
2

8
)

K
e

y
 S

c
h

e
d

u
le

round

plaintext

K
e

y
 (

1
9

2
)

K
e

y
 S

c
h

e
d

u
le

round

.....

round

round

round

plaintext

K
e

y
 (

2
5

6
)

round

round

.....

• AES-192

• 12 rounds

• classified

• AES-256

• 14 rounds

• secret and top

secret

AES implementations:

efficient/compact

• NIST validation list: 1187 implementations (2008: 879)
http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html

• HW: 43 Gbit/s in 130 nm CMOS [„05]

• Intel: new AES instruction: 0.75 cycles/byte [‟09-‟10]

• SW: 7.6 cycles/byte on Core 2 or 110 Mbyte/s bitsliced
[Käsper-Schwabe’09]

• HW: most compact: 3600 gates

– KATAN: 1054, PRESENT: 1570

AES: security

• cryptanalysis: no attack has been found that can

exploit this structure (in spite of the algebraic

“attack” [Courtois‟02])

• implementation level attack
– cache attack precluded by bitsliced implementations

or by special hardware support

– fault attack requires special countermeasures

AES-256 security
• Exhaustive key search on AES-256 takes 2256 encryptions

– 264: 10 minutes with $ 5M

– 280: 2 year with $ 5M

– 2120 : 1 billion years with $ 5B

• [Biryukov-Khovratovich‟09] related key attack on AES-256

– requires 2119 encryptions with 4 related keys,

– data & time complexity 2119  2256

• Why does it work? Very lightweight key schedule

• Is AES-256 broken? No, only an academic

“weakness” that is easy to fix

• No implications on security of AES-128 for encryption

• Do not use AES-256 in a hash function construction

What is a related key attack?
• Attacker chooses plaintexts and key difference C

• Attacker gets ciphertexts

• Task: find the key
K

e
y
 S

c
h

e
d

u
le

round

.....

round

round

round

plaintext1

K
e

y
 (

2
5

6
)

K
e

y
 S

c
h

e
d

u
le

round

.....

round

round

round

plaintext2

K
e

y
 (

2
5

6
)

C

ciphertext2ciphertext1

Should I worry about a related key attack?

• Very hard in practice (except some old US banking

schemes)

• If you are vulnerable to a related key attack, you are

making very bad implementation mistakes

K
e

y
 S

c
h

e
d

u
le

round

.....

round

round

round

plaintext1

K
e

y
 (

2
5

6
)

ciphertext1

h

• This is a very powerful attack

model: if an opponent can

zeroize 96 key bits of his

choice (rather than adding a

value), he can find the key in

a few seconds

• If you are worried, hashing
the key is an easy fix

What about reduced-round versions?
[Biryukov-Dunkelman-Keller-Khovratovich-

Shamir‟09]

Slide credit: Orr Dunkelman

[Biryukov-

Khovratovich’09]

Related key

attack: 4 keys,

data & time

complexity

2119  2256

KASUMI
[Dunkelman-Keller-Shamir‟09]

• Practical related key attack announced in

December 2009 on the block cipher

KASUMI used in 3GPP

– 4 related keys, 226 data, 230 bytes of memory, and

232 time

• It is not possible to carry out this attack in 3G

(as related keys are not available)

18

Stream ciphers

• historically very important (compact)

– LFSR-based: A5/1, A5/2, E0 – practical attacks

known

– software-oriented: RC4 – serious weaknesses

– block cipher in CTR or OFB (slower)

• today:

– many broken schemes

– exception: SNOW2.0, MUGI

– lack of standards and open solutions

19

Open competition for stream ciphers
http://www.ecrypt.eu.org

• run by ECRYPT

– high performance in software (32/64-bit): 128-bit key

– low-gate count hardware (< 1000 gates): 80-bit key

– variants: authenticated encryption

• April 2005: 33 submissions

• many broken in first year

• April 2008: end of competition

20

The eSTREAM Portfolio
Apr. 2008 (Rev1 Sept. 2008)

Software Hardware

HC-128 F-FCSR-H

Rabbit Grain v1

Salsa20/12 MICKEY v2

Sosemanuk Trivium

(in alphabetical order)

3-10 cycles per byte 1500..3000 gates

21

Performance reference data
(Pentium M 1.70GHz Model 6/9/5)

0

20

40

60

80

100

120

RC4 HC-128 DES 3-DES AES

0

5000

10000

15000

20000

25000

30000

35000

RC4 HC-

128

DES 3-DES AES

encryption speed (cycles/byte)

key setup (cycles)

22

Cube attack [Dinur-Shamir‟08]

• Exploits low degree equations in stream cipher

• Can break certain ciphers which could not be broken
before

• …Media hype

• Trivium:
– key setup can be broken if number of rounds is reduced from 1024

to 735

– attack can probably be further improved

– solution: increase number of rounds to 2048

23

MAC algorithms

• EMAC based on AES

• HMAC based on MD5/SHA-1

• GMAC

• UMAC

• NIST: 2 standards for authenticated encryption

– CCM: CTR + CBC-MAC [NIST SP 800-38C]

– GCM: CTR + GMAC [NIST SP 800-38C]

24

HMAC based on MDx, SHA

f1

f2

xK2

K1

Rounds in f1 Rounds in f2 Data complexity

MD4 48 48 288 CP & 295 time

MD5 64 33 of 64 2126 CP

MD5 64 64 251 CP & 2100 time (RK)

SHA(-0) 80 80 2109 CP

SHA-1 80 43 of 80 2154.9 CP

• Widely used in SSL/TLS/IPsec

• Attacks not yet dramatic

• NMAC weaker than HMAC

25

GMAC: polynomial MAC (NIST

SP 800-38D „07 + 3GSM)

• keys K1, K2  GF(2128)

• input x: x1, x2, . . . , xt, with xi  GF(2128)

• g(x) = K1+ Σi=1
t xi • (K2)

i

• in practice: compute K1 = AESK(n) (CTR mode)

• properties:

– fast in software and hardware (support from Intel)

– not very robust w.r.t. nonce reuse, truncation, MAC

verifications, due to reuse of K2 (not in 3GSM!)

– versions over GF(p) (e.g. Poly1305-AES) seem more robust

26

UMAC RFC 4418 (2006)

• key K, k1, k2 .., k256  GF(232) (1024 bytes)

• input x: x1, x2, . . . , x256, with xi  GF(232)

• g(x) = prfK(h(x))

• h(x) = (Σi=1

512
(x2i-1 + k2i-1) mod 232 . (x2i + k2i) mod 232)mod

264

• properties

– software performance: 1-2 cycles/byte

– forgery probability: 1/230 (provable lower bound)

– [Handschuh-Preneel08] full key recovery with 240

verification queries

27

How to use cryptographic algorithms

• Modes of operation

• Padding and error messages

• Authenticated encryption

• How to encrypt with RSA

28

How NOT to use a block cipher:

ECB mode

block

cipher

P1

C1

block

cipher

P2

C2

block

cipher

P3

C3

29

An example plaintext

30

Encrypted with substitution and transposition cipher

31

Encrypted with AES in ECB and CBC mode

32

How to use a block cipher: CBC mode

AES

IV

P1

C1

AES AES

P2 P3

C2 C3

33

CBC mode decryption

AES-1

IV

P1

C1

P2 P3

C2 C3

AES-1 AES-1

34

What if IV is constant?

AES

IV

P1

C1

AES AES

P2‟ P3‟

C2‟ C3‟

Repetition in P results in repetition in C: 

information leakage need random and secret IV

35

CBC with incomplete plaintext (1)

AES

IV

P1

C1

AES AES

P2 P3|| 0000..0

C2 C3

1 byte
Plaintext length

in bytes

36

CBC with incomplete plaintext (2)

AES-1

IV

P1

C1

P2 P3|| 1000..0

C2 C3

AES-1 AES-1

+ 1100110011||0000….000

+ 1100110011||0000….000

Plaintext length in

bytes

37

CBC with incomplete plaintext (3)

• If the first 10 bits of P3 are equal to 1100110011
then after the modification P3‟ will be equal to 0

• The decryption will then produce an error message
because the plaintext length field is incorrect

• Conclusion: information on 1 byte of P3 can be
obtained using on average 128 chosen ciphertexts

• Protection: random padding or authenticated
encryption

P1 P2 P3|| 1000..0

+ 1100110011||0000….000

Plaintext length in

bytes

38

Modes of Operation

• CTR mode allows for pipelining

– Better area/speed trade-off

• authentication: E-MAC and CMAC

– E-MAC is CBC-MAC with extra encryption in last
block

– NIST prefers CMAC (was OMAC)

• authenticated encryption:

– most applications need this primitive (ssh, TLS,
IPsec, …)

– for security against chosen ciphertext this is essential

– NIST solution: GCM (very fast but lacks robustness)

39

Authenticated encryption

Inefficient solution: encrypt then MAC

We can do better

• IAPM

• XECB

• OCB

• CCM

• EAX

• CWC

• GCM

Issues:
• associated data

• parallelizable

• on-line

• patent-free

• provable security

40

Example: CCM: CTR + CBC-MAC

E

SN || 0 || Length

CBC IV

E E E E E

E

T
1

T
2

P
1

P
2

P
n

... ...

Cleartext data

covered by MAC
Plaintext

Truncate

C
1

Ciphertext

SN || 1

E

C
2

SN || 2

E

C
n

...

SN || n

E

C
n+1

SN || n+1

SN = packet sequence number (WEP "IV")

CBC-MAC

Counter

Mode

CBC-MAC

"result"

Public-Key Cryptology

• new factorization record in January 2010:
768 bits

• upgrade your RSA-1024 keys by 2010

• increased acceptance of ECC
– example NSA Suite B in USA

– Certicom challenge: ECC2K-130: 1 year with
60 KEURO (a large effort is underway)

• progress on pairings leading to more
efficient protocols

Attack on ISO 9796-2 [Coron+‟09]

• History:
– ISO 9796-1 (1991) was broken and withdrawn in 2001

– ISO 9796-2 was repaired in 2002 after a first attack in 1999

• New forgery attack on 9796-2 that works for very

long RSA moduli (2048 bits)
– any160-bit hash function: 800$ on Amazon cloud

– the specific EMV variant: 45K$

• Not a practical threat to 750 million EMV cards since

the attack requires a large number of chosen texts

(600,000)

Quantum computers?

• exponential parallelism

• Shor 1994: perfect for factoring

• But: can a quantum computer

be built?

n coupled quantum bits

2n degrees of freedom !

If a large quantum computer can

be built...

• All schemes based on factoring (such as RSA) will
be insecure

• Same for discrete log (ECC)

• Symmetric key sizes: x2

• Hash sizes: x1.5 (?)

• Alternatives: McEliece, NTRU,…

• So far it seems very hard to match performance of
current systems while keeping the security level
against conventional attacks

Quantum computers
• Size of quantum

computer does not
(yet) matter!

0

1

2

3

4

5

6

7

1995 1997 1999 2001 2003 2005 2007 2009

Photon machine gun,

New scientist, Sept. 09

• More important is to keep

a few qubits with high

reliability for a

sufficiently long time

(decoherence)

46

How to encrypt with RSA?

• Assume that the RSA problem is hard

• … so a fortiori we assume that factoring is hard

• How to encrypt with RSA?

– Hint: ensure that the plaintext is mapped to a

random element of [0,n-1] and then apply the RSA

Encryption Permutation (RSAEP)

47

How (not) to encrypt with RSA?

• Non-hybrid schemes

– RSA-PKCS-1v1_5 (RSA Laboratories, 1993)

– RSA-OAEP (Bellare-Rogaway, 1994)

– RSA-OAEP+ (Shoup, 2000)

– RSA-SAEP (Johnson et al., 2001)

– RSA-SAEP+ (Boneh, 2001)

• Hybrid schemes

– RSA-KEM (Zheng-Seberry, 1992)

• RSA-KEM-DEM (Shoup, 2001)

• RSA-REACT (Okamoto-Pointcheval, 2001)

– RSA-GEM (Coron et al., 2002)

48

RSA PKCS-1v1_5

• Introduced in 1993 in PKCS #1 v1.5

• De facto standard for RSA encryption and

key transport

– Appears in protocols such as TLS, S/MIME, ...

49

RSA-PKCS-1v1_5 Diagram

EM

message

padding

000200

Random

nonzero

bytes

RSAEP CPublic Key
Source:

RSA Labs

50

RSA-PKCS-1v1_5 Cryptanalysis

• Low-exponent RSA when very long messages are

encrypted [Coppersmith+ „96/Coron „00]

– large parts of a plaintext is known or similar

messages are encrypted with the same public

key

• Chosen ciphertext attack [Bleichenbacher ‟98]

– decryption oracle: ciphertext valid or not?

– 1024-bit modulus: 1 million decryption queries

• These attacks are precluded by fixes in TLS

51

Bleichenbacher‟s attack

• Goal: decrypt c

– choose random s, 0 < s < n

– computer c‟ = c se mod n

– ask for decryption of c‟: m‟

– compute m as m‟/s mod n

• but m‟ does not have the right format!

• idea: try many random choices for s:

– if no error message is received, we know that

2B < (m s mod n) < 3B

– with B = 28(k-2) (k length in bytes of the modulus)

52

RSA-OAEP

• designers: Bellare and Rogaway 1993

• enhancements by Johnson and Matyas in 1996
(“encoding parameters”)

• already widely adopted in standards

– IEEE P1363 draft

– ANSI X9.44 draft

– PKCS #1 v2.0 (PKCS #1 v2.1 draft)

– ISO 18033-2 working draft 2000

53

RSA-OAEP Diagram

MGF

MGF

seed

EM

message00 ... 01pHashDB =

00

RSAEP CPublic Key

RNG

Source:

RSA Labs

54

RSA OAEP - security

[BR’93] RSA-OAEP is IND-CCA2 secure under

RSA assumption in ROM

[FOPS 01] RSA-OAEP is IND-CCA2 secure under

partial domain one-wayness RSA assumption in ROM

for RSA: partial domain one-wayness one-wayness

Shoup ‘00: the proof is wrong

Reduction is very weak ROM assumption is questionable

55

RSA OAEP - security

• Improved chosen ciphertext attack [Manger, Crypto
„01]

• requires a few thousand queries (1.1 log2n)

• opponent needs oracle that tells whether there is an
error in the integer-to-byte conversion or in the OAEP
decoding

• overall conclusion: RSA Inc. is no longer
recommending the use of RSA-OAEP

if it’s provable secure, it probably isn’t

56

How to encrypt with RSA

• RSA-KEM

– encrypt 2 session keys with RSA

– encrypt and MAC data with these 2 keys

• Recommended in NESSIE report
(http://www.cryptonessie.org) and to be included in
ISO 18033

• Similar problems for signatures:
ISO 9796-1 broken, PKCS#1 v1.0 questionable

57

Attack on PKCS #1 v1.5 implementations (1)
[Bleichenbacher06]

00 01 ff … ff 00 HHashID Magic

• Consider RSA with public exponent 3

• For any hash value H, it is easy to compute a string
“Magic” such that the above string is a perfect cube
of 3072 bits

• Consequence:

– One can sign any message (H) without knowing
the private key

– This signature works for any public key that is
longer than 3072 bits

• Vulnerable: OpenSSL, Mozilla NSS, GnuTLS

58

Attack on PKCS #1 v1.5 implementations (2)
[Bleichenbacher06]

00 01 ff … ff 00 HHashID Magic

• Fix
– Write proper verification code (but the signer cannot

know which code the verifier will use)

– Use a public exponent that is at least 32 bits

– Upgrade – finally – to RSA-PSS

59

Cryptographic algorithm selection

• Standards?

• Public domain versus proprietary

• Upgrades

60

Cryptographic standards

• Algorithms historically sensitive (e.g., GSM)

• Choices with little technical motivation (e.g.,

RC2 and MD2)

• Little or no coordination effort (even within

IETF)

• Technically difficult

A.S. Tanenbaum: “The nice thing about

standards is there's so many to choose from”

61

Major Standardization Bodies in Cryptography

• International
– ISO and ISO/IEC International Organization for Standardization

– ITU: International Telecommunications Union

– IETF: Internet Engineering Task Force

– IEEE: Institute of Electrical and Electronic Engineers

• National
– ANSI: American National Standards Institute

– NIST: National Institute of Standards and Technology

• European
– CEN: Comité Européen de Normalisation

– ETSI: European Telecommunications Standards Institute

• Industry
– PKCS, SECG

– W3C, OASIS, Liberty Alliance, Wi-Fi Alliance, BioAPI, WS-Security,
TCG

– GP, PC/SC, Open Card Framework, Multos

62

Independent evaluation efforts

• NIST (US) (1997-2001): block cipher AES for
FIPS 197 (http://csrc.nist.gov/CryptoToolkit/aes/)

• CRYPTREC (Japan) (2000-2003): cryptographic
algorithms and protocols for government use in Japan
(http://www.ipa.go.jp/security)

• EU-funded IST-NESSIE Project (2000-2003): new
cryptographic primitives based on an open evaluation
procedure (http://www.cryptonessie.org)

• ECRYPT eSTREAM (2004-2007): stream cipher
competition

63

Proprietary/secret algorithms

• No “free” public

evaluations

• Risk of snake oil

• Cost of (re)-evaluation

very high

• No economy of scale in

implementations

• Reverse engineering

• Fewer problems with

rumors and “New York

Times” attacks

• Extra reaction time if

problems

• Fewer problems with

implementation attacks

• Can use crypto for IPR

and licensing

64

Many insecure algorithms in use

• Do it yourself (snake oil)

• Export controls

• Increased computational power for attacks (64-bit

keys are no longer adequate)

• Cryptanalysis progress - including errors in proofs

• Upgrading is often too hard by design

– cost issue

– backward compatibility

– version roll-back attacks

65

Upgrade problem

• GSM: A5/3 takes a

long time

• Bluetooth: E0

hardwired

• TCG: chip with fixed

algorithms

• MD5 and SHA-1

widely used

• Negotiable algorithms

in SSH, TLS, IPsec,…

• But even then these

protocols have

problems getting rid of

MD5/SHA-1

Make sure that you do not use the same key with a weak

and a strong variant (e.g. GSM A5/2 and A5/3)

66

And the good news

• Many secure and free solutions available

today: AES, RSA,…

• With some reasonable confidence in secure

• Cost of strong crypto decreasing except for

“niche applications” (ambient intelligence)

In spite of all the problems, cryptography is

certainly not the weakest link in our security chain

67

What to use (generic solutions)

• Authenticated encryption mode (OCB, CWC,
CCM, or even GCM) with 3-key 3-DES or
AES

• Hash functions: RIPEMD-160, SHA-256,
SHA-512 or Whirlpool

• Public key encryption: RSA-KEM or ECIES

• Digital signatures: RSA-PSS or ECDSA

• Protocols: TLS, SSH, IKE(v2)

68

Secure implementations of

cryptography

• Error messages and APIs (cf. supra)

• Side channels

– Timing attacks

– Power attacks

– Acoustic attacks

– Electromagnetic attacks

• Fault attacks

69

Power analysis tools for smart cards

5V



70

Software: constant time is crucial

• PIN verification

• Square and multiply for RSA

• Variable rotations in RC5 and RC6

• Swaps in RC4

• Problems with cache misses in ciphers with

S-boxes such as DES and AES

71

PIN verification

input (PIN_U[0..k-1],PIN[0..k-1])

i=0;

while (i < k) do {

if (PIN_U[i] != PIN[i]) return (0);

i = i+1;

}

return(1);

Problem?

72

Timing attack on RSA
• “square and multiply” algorithm

• exponent bits scanned from MSB to LSB (left to right)

Let k = bitsize of d (say 1024)

Let s = m

For i = k-2 down to 0

 Let s = s*s mod n (SQUARE)

 If (bit i of d) is 1 then
 Let s = s*m mod n (MULTIPLY)
 End if

End for

Example : s = m9 = m1001b

init (MSB 1) s = m

round 2 (bit 0) s = m2

round 1 (bit 0) s = (m2)2 = m4

round 0 (bit 1) s = (m4)2 * m = m9

73

Cache attack on crypto algorithms with

S-boxes (DES, AES,…)

• Cache misses influence execution time

• Uses HyperThreading to monitor the encrypting
process in real time and observe its use of shared
resources.

• [Tsunoo-Saito-Suzaki-Shigeri-Miyauchi 03]
Cryptanalysis of DES implemented on computers
with cache, CHES 2003, LNCS 2779, 62-76, 2003

• [Osvik-Shamir-Tromer 05] Cache Attacks and
Countermeasures: the Case of AES, RSA CT 2006

• [Bernstein 05] Cache-timing attacks on AES

74

Implementation attacks (13 May ‟08)

Debian-OpenSSL incident

• Weak key generation:

only 32K keys

– easy to generate all private keys

– collisions

• Between 13-17 May:

280 bad keys out of 40K

(0.6%)

• Revocation problematic

75

Implementation attacks

cold boot attack

• Why break cryptography? Go for the key, stupid!

• Data reminence in DRAMs
Lest We Remember: Cold Boot Attacks on Encryption Keys [Halderman-

Schoen-Heninger-Clarkson-Paul- Calandrino-Feldman- Appelbaum-

Felten‟08]

– Boot from USB device and dump RAM image

– Works for AES, RSA,…

– Products: BitLocker, FileVault, TrueCrypt, dm-crypt, loop-AES

5

sec
30

sec

60

sec

5

min

76

Implementation attacks

cold boot attack (2)

• Countermeasures

– Overwrite keys in memory

– Shut down rather than sleep/hibernate

– Limit boot options (network, USB)

– resilient exposure cryptography (AONT)

– physical protection of DRAM

– encrypt in the disk controller

– new architecture

• Ineffective: trusted computing as implemented today

77

Some crypto libraries

• OpenSSL: http://www.openssl.org/

• Cryptlib:
http://www.cs.auckland.ac.nz/~pgut001/cryptlib/

• SSLeay: http://www2.psy.uq.edu.au/~ftp/Crypto/

• IAIK Java:
http://jce.iaik.tugraz.at/products/index.php

• COSIC crypto library (contact B. Preneel)

• See also
http://www.ssh.fi/support/cryptography/online_r
esources/practical.html

78

Novel applications of cryptography

• Whitebox crypto

• SPAM fighting

79

Protection of software against

whitebox attacks

• Software
• Confidential information

• Secret keys

• Proprietary code

• Software and content distribution

• White-box setting
• Complete accesss to implementation

• Decompilation, reverse engineering, …

80

Protection of software against

whitebox attacks

• “sandboxing”
protect host against malware

• malicious hosts
protect software against malicious

hosts

81

Techniques

• White-box cryptography
• Extra input and output coding of encryption

• Code obfuscation
• Obfuscate code and program flow

• Other techniques:
• Integrity checks + error detection

 Tamper resistant software (TRS)

• Code encryption + „on-the-fly‟ decryption

82

White Box Cryptography

• Mathematical technique to hide keys in code

• With:
• EK : encryption function, key K

• F : arbitrary input coding

• G : arbitrary output coding

83

Pro and Cons

• Unique object code

– Choose F and G

– Integrate key

• Protect key

– No function that

computes EK for an

arbitrary key K

• Flexible

• Fast updates

• Increased memory

– Tables for input and
output coding and for
function

• Increased execution
time

• Security: very strong
attack model

– Trade-off with
performance

• Fast key update open
problem

84

Example

• DES
– 16-round Feistel

– 8 S-boxes

– 56-bit key

• White-box DES
– General structure

– 12 “T-boxes”

– Key built in code

85

The SPAM problem: it is about

economics, stupid

• list of 107-108 “good” names

• cost per message: ~10-5 €; total cost 100-1000 €

• hit ratio: 10-6 to 10-4: 10-10000 responses

• Cost to society

• Ruining e-mail as communication tool

• Time and attention

• ISP fees

• Storage and bandwidth

86

"The right to be left alone - the most

comprehensive of rights, and the right

most valued by civilized men."

- Supreme Court Justice Louis Brandeis

AND…

87

Fighting SPAM

• Filtering

• Make sender pay

• Ephemeral email addresses

• Data/Sender Authentication

88

Fighting SPAM (2)

• Filtering

 Everyone: text-based

 Brightmail: decoys; rules updates

 Microsoft Research: (seeded) trainable filters

 SpamCloud: collaborative filtering

 SpamCop, Osirusoft, etc: IP addresses, proxies, …

• Make Sender Pay

 Computation (CPU and/or memory)

 Human attention

 Cash, bonds, stamps (PennyBlack)

89

Fighting SPAM (3)

• Ephemeral e-mail addresses

– E.g. SPA: Single Purpose Addresses

• Data/Sender authentication

 Sign all emails

 Sender Permitted From (SPF): whitelist mail senders

 Sign domain names (Yahoo‟s DomainKeys)

 Authenticated mail: AMTP (TLS)

Often bypass for friends on whitelist

90

Filtering: limitations

• Still high cost if too late in the chain

• Spammers generate more sophisticated

emails…

– "Daphnia blue-crested fish cattle, darkorange

fountain moss, beaverwood educating, eyeblinking

advancing, dulltuned amazons...."

– FWD: Many On Stocks. Vali/u/m + V1codin+ ;

V|@GRa + /Xanax/ ; Pnter.m.in ? Som|a| muKPs

91

Computational Approach

• If I don‟t know the sender:

– Prove sender spent 10 seconds CPU time,

– just for me, and just for this message

• Checking proof by receiver:

– automatically in the background

– very efficient

• All unsolicited mail treated equally

92

Point-to-Point Architecture

(Ideal Message Flow)

• Single-pass “send-and-forget”

• Can augment with helper to handle slow machines
• Can add post office / pricing authority to handle money

payments
• Time mostly used as nonce for avoiding replays (cache tags,

discard duplicates; time controls size of cache)

Sender client

S

Recipient client

R

m, f(S,R,t,nonce)

93

Economics

• 10 seconds CPU cost a few hundreds of a cent

• (80,000 s/day) / (10s/message) = 8,000 msgs/day

• Hotmail‟s billion daily spams:

– 125,000 CPUs

– Up front capital cost just for hardware: $150 million

• The spammers can’t afford it.

94

Cryptographic Puzzles

• Hard to compute; f(S,R,t,nonce) can‟t be amortized

• lots of work for the sender

• Easy to check “z = f(S,R,t,nonce)”

• little work for receiver

• Parameterized to scale with Moore's Law

• easy to exponentially increase computational cost, while
barely increasing checking cost

• Can be based on (carefully) weakened signature
schemes, hash collisions

• Can arrange a “shortcut” for post office

95

Idea: replace CPU by memory

• CPU speeds vary widely across machines, but memory
latencies vary much less (20-100 vs 2-6)
 33 MHz PDA vs. 3 GHz PC

• design a puzzle leading to a large number of cache
misses

• Concrete schemes: [ABMW02] and [DGN03]

96

Easy Functions

[ABMW02]

0 1 2 2
n
-1 X0

 Xk

Xk-1

• f: n bits to n bits, easy

• Given xk  range(f(k)), find a
pre-image with certain
properties

• Hope: best solved by building
table for f-1 and working back
from xk

• Choose n=22 so f -1 fits in
small memory, but not in
cache

• Optimism: xk is root of tree of
expected size k2

97

Social Issues

• Who chooses f?

– One global f? Who sets the price?

– Autonomously chosen f‟s?

• How is f distributed (ultimately)?

– Global f built into all mail clients? (1-pass)

– Directory? Query-Response? (3-pass)

98

Technical Issues

• Distribution lists

• Awkward introductory period

– Old versions of mail programs; bounces

• Very slow/small-memory machines

– Can implement “post office” (CPU), but:

– Who gets to be the Post Office? Trust?

• Cache Thrashing (memory-bound)

• The Subverters or Zombies

99

Conclusions: cryptography

• Can only move and simplify your problems

• Solid results, but still relying on a large
number of unproven assumptions and beliefs

• Not the bottleneck or problem in most
security systems

• To paraphrase Laotse, you cannot create
trust with cryptography, no matter how much
cryptography you use -- Jon Callas.

100

Conclusions (2): cryptography

• Leave it to the experts

• Do not do this at home

• Make sure you can upgrade

• Implementing it correctly is hard

• Secure computation very challenging and
promising: reduce trust in individual building
blocks

101

SPAM

• L. F. Cranor, B.A. LaMacchia: Spam!; Communications of the ACM
1998, 21 (8), 74-83.

• C. Dwork, M. Naor: Pricing via Processing or Combatting Junk Mail;
Crypto '92, LNCS 740, Springer-Verlag, Berlin 1992, 139-147.

• E. Gabber, M. Jacobsson, Y. Matias, A. Mayer: Curbing Junk E-Mail via
Secure Classification; 2nd International Conference on Financial
Cryptography (FC '98), LNCS 1465, Springer-Verlag, Berlin 1998, 198-
213.

• A. Juels, J. Brainard: Client Puzzles: A Cryptographic Countermeasure
Against Connection Depletion Attacks; 6th ISOC Symposium on
Network and Distributed System Security (NDSS '99), IEEE Press, 1999,
151-165.

• M. Abadi, M. Burrows, M. Manasse, E. Wobber, Moderately hard,
memory-bound functions, Proceedings of the 10th Annual Network and
Distributed System Security Symposium (February 2003), 25-39.

• C. Dwork, A. Goldberg, M. Naor, On Memory-Bound Functions for
Fighting Spam, Crypto 2003, 426-444.

Selected books on cryptology

 D. Stinson, Cryptography: Theory and Practice, CRC
Press, 3rd Ed., 2005. Solid introduction, but only for the
mathematically inclined.

 A.J. Menezes, P.C. van Oorschot, S.A. Vanstone,
Handbook of Applied Cryptography, CRC Press,
1997. The bible of modern cryptography. Thorough and
complete reference work – not suited as a first text book.
Freely available at http://www.cacr.math.uwaterloo.ca/hac

 N. Smart, Cryptography, An Introduction: 3rd Ed.,
2008. Solid and up to date but on the mathematical side.
Freely available at http://www.cs.bris.ac.uk/~nigel/Crypto_Book/

 B. Schneier, Applied Cryptography, Wiley, 1996.
Widely popular and very accessible – make sure you get the
errata.

 Other authors: Johannes Buchmann, Serge Vaudenay
102

