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Outline

• 1. Cryptology: concepts and algorithms

• 2. Cryptology: protocols

• 3. Public-Key Infrastructure principles

• 4. Networking protocols

• 5. New developments in cryptology

• 6. How to use cryptography well

• 7. Hash functions
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Outline

• Block ciphers/stream ciphers/MAC algorithms

• Modes of operation and authenticated 

encryption

• How to encrypt using RSA

• Algorithm: secure design and implementation

• Obfuscation

• SPAM fighting
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Block ciphers: Keeloq
• Microchip Inc algorithm, designed in the 1980s

• Allegedly used in large % of the cars for car locks, 
car alarms

• Block cipher with 32-bit blocks, 64-bit keys and 
528 simple rounds

• Leaked on the internet early 2007
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Block ciphers: Keeloq (2)

[Bogdanov07] Car key = Master key + Car ID

[Biham-Dunkelman-Indesteeghe-Keller-Preneel07]: 

– 1 hour access to token + 2 days of calculation 

[Eisenbarth-Kasper-Moradi-Paar-Salmasizadeh-Manzuri 
ShalmaniPaar 08]

– Side channel attack allows to recover master key in 
hopping mode

in 2010 cryptographers will drive expensive cars



3-DES: NIST Spec. Pub. 800-67

(May 2004)

• Single DES abandoned

• two-key triple DES: until 2009 (80 bit security)

• three-key triple DES: until 2030 (100 bit security)

DES Clear  

text
DES-1 DES 

1 2 3

%^C&

@&^(

Highly vulnerable to a 

related key attack



AES (2001)
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• Block length: 128 bits

• Key length: 128-192-256 

bits

A $ 10M machine that cracks a DES 

key in 1 second would take 149 trillion 

years to crack a 128-bit key



AES variants (2001)
• AES-128

• 10 rounds 

• sensitive

Light weight key schedule, in particular for the 256-bit version
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• AES-192

• 12 rounds 

• classified

• AES-256

• 14 rounds 

• secret and top 

secret



AES implementations: 

efficient/compact

• NIST validation list: 1187 implementations (2008: 879)
http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html

• HW: 43 Gbit/s in 130 nm CMOS [„05]

• Intel: new AES instruction: 0.75 cycles/byte [‟09-‟10]

• SW: 7.6 cycles/byte on Core 2 or 110 Mbyte/s  bitsliced 
[Käsper-Schwabe’09]

• HW: most compact: 3600 gates

– KATAN: 1054, PRESENT: 1570



AES: security

• cryptanalysis: no attack has been found that can 

exploit this structure (in spite of the algebraic 

“attack” [Courtois‟02])

• implementation level attack
– cache attack precluded by bitsliced implementations 

or by special hardware support

– fault attack requires special countermeasures



AES-256 security 
• Exhaustive key search on AES-256 takes 2256 encryptions

– 264: 10 minutes with $ 5M

– 280: 2 year with $ 5M 

– 2120 : 1 billion years with $ 5B

• [Biryukov-Khovratovich‟09] related key attack on AES-256

– requires 2119 encryptions with 4 related keys,

– data & time complexity 2119  2256

• Why does it work? Very lightweight key schedule

• Is AES-256 broken? No, only an academic    

“weakness” that is easy to fix

• No implications on security of AES-128 for encryption

• Do not use AES-256 in a hash function construction



What is a related key attack?
• Attacker chooses plaintexts and key difference C

• Attacker gets ciphertexts

• Task: find the key
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Should I worry about a related key attack?

• Very hard in practice (except some old US banking 

schemes)

• If you are vulnerable to a related key attack, you are 

making very bad implementation mistakes
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• This is a very powerful attack 

model: if an opponent can 

zeroize 96 key bits of his 

choice (rather than adding a 

value), he can find the key in 

a few seconds

• If you are worried, hashing 
the key is an easy fix



What about reduced-round versions?
[Biryukov-Dunkelman-Keller-Khovratovich-

Shamir‟09]

Slide credit: Orr Dunkelman

[Biryukov-

Khovratovich’09]

Related key 

attack: 4 keys,  

data & time 

complexity 

2119  2256



KASUMI
[Dunkelman-Keller-Shamir‟09]

• Practical related key attack announced in 

December 2009 on the block cipher 

KASUMI used in 3GPP

– 4 related keys, 226 data, 230 bytes of memory, and 

232 time

• It is not possible to carry out this attack in 3G 

(as related keys are not available)
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Stream ciphers

• historically very important (compact)

– LFSR-based: A5/1, A5/2,  E0 – practical attacks 

known

– software-oriented: RC4 – serious weaknesses

– block cipher in CTR or OFB (slower)

• today: 

– many broken schemes

– exception: SNOW2.0, MUGI

– lack of standards and open solutions



19

Open competition for stream ciphers 
http://www.ecrypt.eu.org

• run by ECRYPT

– high performance in software (32/64-bit): 128-bit key

– low-gate count hardware (< 1000 gates): 80-bit key

– variants: authenticated encryption

• April 2005: 33 submissions

• many broken in first year

• April 2008: end of competition
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The eSTREAM Portfolio
Apr. 2008 (Rev1 Sept. 2008)

Software Hardware

HC-128 F-FCSR-H

Rabbit Grain v1

Salsa20/12 MICKEY v2

Sosemanuk Trivium

(in alphabetical order)

3-10 cycles per byte 1500..3000 gates
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Performance reference data 
(Pentium M 1.70GHz Model 6/9/5)
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Cube attack [Dinur-Shamir‟08]

• Exploits low degree equations in stream cipher

• Can break certain ciphers which could not be broken 
before

• …Media hype

• Trivium: 
– key setup can be broken if number of rounds is reduced from 1024 

to 735

– attack can probably be further improved

– solution: increase number of rounds to 2048
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MAC algorithms

• EMAC based on AES

• HMAC based on MD5/SHA-1

• GMAC 

• UMAC

• NIST: 2 standards for authenticated encryption

– CCM: CTR  + CBC-MAC  [NIST SP 800-38C]

– GCM: CTR + GMAC [NIST SP 800-38C]
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HMAC based on MDx, SHA

f1

f2

xK2

K1

Rounds in f1 Rounds in f2 Data complexity

MD4 48 48 288 CP & 295 time 

MD5 64 33 of 64 2126 CP

MD5 64 64 251 CP & 2100 time (RK)

SHA(-0) 80 80 2109 CP

SHA-1 80 43 of 80 2154.9 CP

• Widely used in SSL/TLS/IPsec 

• Attacks not yet dramatic

• NMAC weaker than HMAC
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GMAC: polynomial MAC (NIST 

SP 800-38D „07 + 3GSM)

• keys K1, K2  GF(2128)

• input x: x1, x2, . . . , xt, with xi  GF(2128)

• g(x) = K1+ Σi=1
t xi • (K2)

i

• in practice: compute K1 = AESK(n)  (CTR mode)

• properties:

– fast in software and hardware (support from Intel)

– not very robust w.r.t. nonce reuse, truncation, MAC 

verifications, due to reuse of K2  (not in 3GSM!)

– versions over GF(p) (e.g. Poly1305-AES) seem more robust
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UMAC RFC 4418 (2006)

• key K, k1, k2 .., k256  GF(232)  (1024 bytes)

• input x: x1, x2, . . . , x256, with xi  GF(232)

• g(x) = prfK(h(x))

• h(x) = ( Σi=1

512
(x2i-1 + k2i-1) mod 232  . (x2i + k2i) mod 232 )mod 

264

• properties

– software performance: 1-2 cycles/byte

– forgery probability: 1/230 (provable lower bound)

– [Handschuh-Preneel08]  full key recovery with 240

verification queries
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How to use cryptographic algorithms

• Modes of operation

• Padding and error messages

• Authenticated encryption

• How to encrypt with RSA
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How NOT to use a block cipher: 

ECB mode

block 

cipher

P1

C1

block 

cipher

P2

C2

block 

cipher

P3

C3
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An example plaintext
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Encrypted with substitution and transposition cipher
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Encrypted with AES in ECB and CBC mode
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How to use a block cipher: CBC mode 

AES

IV

P1

C1

AES AES

P2 P3

C2 C3
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CBC mode decryption

AES-1

IV

P1

C1

P2 P3

C2 C3

AES-1 AES-1
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What if IV is constant? 

AES

IV

P1

C1

AES AES

P2‟ P3‟

C2‟ C3‟

Repetition in P results in repetition in C: 

information leakage need random and secret IV  
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CBC with incomplete plaintext  (1)

AES

IV

P1

C1

AES AES

P2 P3|| 0000..0

C2 C3

1 byte
Plaintext length 

in bytes
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CBC with incomplete plaintext  (2)

AES-1

IV

P1

C1

P2 P3|| 1000..0

C2 C3

AES-1 AES-1

+ 1100110011||0000….000

+ 1100110011||0000….000

Plaintext length in 

bytes
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CBC with incomplete plaintext  (3)

• If the first 10 bits of P3 are equal to 1100110011 
then after the modification P3‟ will be equal to 0

• The decryption will then produce an error message 
because the plaintext length field is incorrect

• Conclusion: information on 1 byte of P3 can be 
obtained using on average 128 chosen ciphertexts

• Protection: random padding or authenticated 
encryption

P1 P2 P3|| 1000..0

+ 1100110011||0000….000

Plaintext length in 

bytes
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Modes of Operation

• CTR mode allows for pipelining

– Better area/speed trade-off

• authentication: E-MAC and CMAC

– E-MAC is CBC-MAC with extra encryption in last 
block

– NIST prefers CMAC (was OMAC)

• authenticated encryption:

– most applications need this primitive (ssh, TLS, 
IPsec, …)

– for security against chosen ciphertext this is essential

– NIST solution: GCM (very fast but lacks robustness)
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Authenticated encryption

Inefficient solution: encrypt then MAC

We can do better

• IAPM

• XECB

• OCB

• CCM

• EAX

• CWC

• GCM 

Issues:
• associated data

• parallelizable

• on-line

• patent-free

• provable security
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Example: CCM: CTR + CBC-MAC

E

SN || 0 || Length

CBC IV

E E E E E

E

T
1

T
2

P
1

P
2

P
n

... ...

Cleartext data

covered by MAC
Plaintext

Truncate

C
1

Ciphertext

SN || 1

E

C
2

SN || 2

E

C
n

...

SN || n

E

C
n+1

SN || n+1

SN = packet sequence number (WEP "IV")

CBC-MAC

Counter

Mode

CBC-MAC

"result"



Public-Key Cryptology

• new factorization record in January 2010: 
768 bits

• upgrade your RSA-1024 keys by 2010

• increased acceptance of ECC
– example NSA Suite B in USA

– Certicom challenge: ECC2K-130: 1 year with 
60 KEURO (a large effort is underway)

• progress on pairings leading to more 
efficient protocols



Attack on ISO 9796-2 [Coron+‟09]

• History: 
– ISO 9796-1 (1991) was broken and withdrawn in 2001

– ISO 9796-2 was repaired in 2002 after a first attack in 1999

• New forgery attack on 9796-2 that works for very 

long RSA moduli (2048 bits)
– any160-bit hash function: 800$ on Amazon cloud

– the specific EMV variant: 45K$ 

• Not a practical threat to 750 million EMV cards since 

the attack requires a large number of chosen texts 

(600,000)



Quantum computers?

• exponential parallelism

• Shor 1994: perfect for factoring

• But: can a quantum computer 

be built?

n coupled quantum bits

2n degrees of freedom !



If a large quantum computer can 

be built...

• All schemes based on factoring (such as RSA) will 
be insecure

• Same for discrete log (ECC)

• Symmetric key sizes: x2

• Hash sizes: x1.5 (?) 

• Alternatives: McEliece, NTRU,…

• So far it seems very hard to match performance of 
current systems while keeping the security level 
against conventional attacks



Quantum computers 
• Size of quantum 

computer does not 
(yet) matter!

0

1

2

3

4

5

6

7

1995 1997 1999 2001 2003 2005 2007 2009

Photon machine gun, 

New scientist, Sept. 09

• More important is to keep 

a few qubits with high 

reliability for a 

sufficiently long time 

(decoherence)
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How to encrypt with RSA?

• Assume that the RSA problem is hard

• … so a fortiori we assume that factoring is hard

• How to encrypt with RSA?

– Hint: ensure that the plaintext is mapped to a 

random element of [0,n-1] and then apply the RSA 

Encryption Permutation (RSAEP)
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How (not) to encrypt with RSA?

• Non-hybrid schemes

– RSA-PKCS-1v1_5 (RSA Laboratories, 1993)

– RSA-OAEP (Bellare-Rogaway, 1994)

– RSA-OAEP+ (Shoup, 2000)

– RSA-SAEP (Johnson et al., 2001)

– RSA-SAEP+ (Boneh, 2001) 

• Hybrid schemes

– RSA-KEM (Zheng-Seberry, 1992)

• RSA-KEM-DEM (Shoup, 2001)

• RSA-REACT (Okamoto-Pointcheval, 2001)

– RSA-GEM (Coron et al., 2002) 
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RSA PKCS-1v1_5

• Introduced in 1993 in PKCS #1 v1.5

• De facto standard for RSA encryption and 

key transport

– Appears in protocols such as TLS, S/MIME, ...
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RSA-PKCS-1v1_5 Diagram

EM

message

padding

000200

Random 

nonzero 

bytes

RSAEP CPublic Key
Source:

RSA Labs
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RSA-PKCS-1v1_5 Cryptanalysis

• Low-exponent RSA when very long messages are 

encrypted [Coppersmith+ „96/Coron „00]

– large parts of a plaintext is known or similar 

messages are encrypted with the same public 

key

• Chosen ciphertext attack [Bleichenbacher ‟98]

– decryption oracle: ciphertext valid or not?

– 1024-bit modulus: 1 million decryption queries

• These attacks are precluded by fixes in TLS
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Bleichenbacher‟s attack

• Goal: decrypt c

– choose random s, 0 < s < n

– computer c‟ = c se mod n

– ask for decryption of c‟: m‟

– compute m as m‟/s mod n

• but  m‟ does not have the right format!

• idea: try many random choices for s:

– if no error message is received, we know that 

2B < (m s mod n) < 3B 

– with B = 28(k-2) (k length in bytes of the modulus)
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RSA-OAEP

• designers: Bellare and Rogaway 1993

• enhancements by Johnson and Matyas in 1996 
(“encoding parameters”)

• already widely adopted in standards

– IEEE P1363 draft

– ANSI X9.44 draft

– PKCS #1 v2.0  (PKCS #1 v2.1 draft)

– ISO 18033-2 working draft 2000



53

RSA-OAEP Diagram

MGF

MGF

seed

EM

message00 ... 01pHashDB =

00

RSAEP CPublic Key

RNG

Source:

RSA Labs
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RSA OAEP - security

[BR’93] RSA-OAEP is IND-CCA2 secure under 

RSA assumption in ROM

[FOPS 01] RSA-OAEP is IND-CCA2 secure under 

partial domain one-wayness RSA assumption in ROM

for RSA: partial domain one-wayness one-wayness

Shoup ‘00: the proof is wrong

Reduction is very weak ROM assumption is questionable



55

RSA OAEP - security

• Improved chosen ciphertext attack [Manger, Crypto 
„01]

• requires a few thousand queries (1.1 log2n)

• opponent needs oracle that tells whether there is an 
error in the integer-to-byte conversion or in the OAEP 
decoding

• overall conclusion: RSA Inc. is no longer 
recommending the use of RSA-OAEP

if it’s provable secure, it probably isn’t
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How to encrypt with RSA

• RSA-KEM

– encrypt 2 session keys with  RSA

– encrypt and MAC data with these 2 keys

• Recommended in NESSIE report 
(http://www.cryptonessie.org) and to be included in 
ISO 18033

• Similar problems for signatures:                           
ISO 9796-1 broken, PKCS#1 v1.0 questionable
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Attack on PKCS #1 v1.5 implementations (1) 
[Bleichenbacher06]

00 01 ff …  ff 00 HHashID Magic

• Consider RSA with public exponent 3 

• For any hash value H, it is easy to compute a string 
“Magic” such that the above string is a perfect cube 
of 3072 bits

• Consequence:

– One can sign any message (H) without knowing 
the private key

– This signature works for any public key that is 
longer than 3072 bits

• Vulnerable: OpenSSL, Mozilla NSS, GnuTLS
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Attack on PKCS #1 v1.5 implementations (2) 
[Bleichenbacher06]

00 01 ff …  ff 00 HHashID Magic

• Fix
– Write proper verification code (but the signer cannot 

know which code the verifier will use)

– Use a public exponent that is at least 32 bits 

– Upgrade – finally – to RSA-PSS
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Cryptographic algorithm selection

• Standards?

• Public domain versus proprietary

• Upgrades



60

Cryptographic standards

• Algorithms historically sensitive (e.g., GSM)

• Choices with little technical motivation (e.g., 

RC2 and MD2)

• Little or no coordination effort (even within 

IETF)

• Technically difficult

A.S. Tanenbaum: “The nice thing about 

standards is there's so many to choose from”
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Major Standardization Bodies in Cryptography

• International
– ISO and ISO/IEC International Organization for Standardization

– ITU: International Telecommunications Union

– IETF: Internet Engineering Task Force

– IEEE: Institute of Electrical and Electronic Engineers

• National
– ANSI: American National Standards Institute

– NIST: National Institute of Standards and Technology

• European
– CEN: Comité Européen de Normalisation

– ETSI: European Telecommunications Standards Institute

• Industry
– PKCS, SECG

– W3C, OASIS, Liberty Alliance, Wi-Fi Alliance, BioAPI, WS-Security, 
TCG

– GP, PC/SC, Open Card Framework, Multos
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Independent evaluation efforts

• NIST (US) (1997-2001):  block cipher AES  for 
FIPS 197 (http://csrc.nist.gov/CryptoToolkit/aes/)

• CRYPTREC (Japan) (2000-2003): cryptographic 
algorithms and protocols for government use in Japan 
(http://www.ipa.go.jp/security)

• EU-funded IST-NESSIE Project (2000-2003): new 
cryptographic primitives based on an open evaluation 
procedure (http://www.cryptonessie.org)

• ECRYPT eSTREAM (2004-2007): stream cipher 
competition
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Proprietary/secret algorithms

• No “free” public 

evaluations

• Risk of snake oil

• Cost of (re)-evaluation 

very high 

• No economy of scale in 

implementations

• Reverse engineering 

• Fewer problems with 

rumors and “New York 

Times” attacks

• Extra reaction time if 

problems

• Fewer problems with 

implementation attacks

• Can use crypto for IPR 

and licensing
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Many insecure algorithms in use

• Do it yourself (snake oil)

• Export controls

• Increased computational power for attacks (64-bit 

keys are no longer adequate)

• Cryptanalysis progress - including errors in proofs

• Upgrading is often too hard by design

– cost issue

– backward compatibility 

– version roll-back attacks



65

Upgrade problem

• GSM: A5/3 takes a 

long time

• Bluetooth: E0 

hardwired

• TCG: chip with fixed 

algorithms

• MD5 and SHA-1 

widely used

• Negotiable algorithms 

in SSH, TLS, IPsec,…

• But even then these 

protocols have 

problems getting rid of 

MD5/SHA-1

Make sure that you do not use the same key with a weak 

and a strong variant (e.g. GSM A5/2 and A5/3)
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And the good news

• Many secure and free solutions available 

today: AES, RSA,…

• With some reasonable confidence in secure

• Cost of strong crypto decreasing except for 

“niche applications” (ambient intelligence)

In spite of all the problems, cryptography is 

certainly not the weakest link in our security chain
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What to use (generic solutions)

• Authenticated encryption mode (OCB, CWC, 
CCM, or even GCM) with 3-key 3-DES or 
AES

• Hash functions: RIPEMD-160, SHA-256, 
SHA-512 or Whirlpool

• Public key encryption: RSA-KEM or ECIES

• Digital signatures: RSA-PSS or ECDSA

• Protocols: TLS, SSH, IKE(v2) 
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Secure implementations of 

cryptography

• Error messages and APIs (cf. supra)

• Side channels

– Timing attacks

– Power attacks

– Acoustic attacks

– Electromagnetic attacks

• Fault attacks
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Power analysis tools for smart cards

5V


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Software: constant time is crucial

• PIN verification

• Square and multiply for RSA

• Variable rotations in RC5 and RC6

• Swaps in RC4

• Problems with cache misses in ciphers with 

S-boxes such as DES and AES 
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PIN verification

input (PIN_U[0..k-1],PIN[0..k-1])

i=0; 

while (i < k) do {

if (PIN_U[i] != PIN[i]) return (0);

i = i+1;

}

return(1);

Problem?
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Timing attack on RSA
• “square and multiply” algorithm

• exponent bits scanned from MSB to LSB (left to right)

Let k = bitsize of d (say 1024) 
 
Let s = m 
 
For i = k-2 down to 0 
 
  Let s = s*s mod n (SQUARE) 
 
  If (bit i of d) is 1  then 
   Let s = s*m mod n (MULTIPLY) 
  End if 
 
End for 

Example : s = m9 = m1001b

init (MSB 1) s = m

round 2 (bit 0) s = m2

round 1 (bit 0) s = (m2 )2 = m4

round 0 (bit 1) s = (m4 )2 * m = m9
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Cache attack on crypto algorithms with 

S-boxes (DES, AES,…)

• Cache misses influence execution time

• Uses HyperThreading to monitor the encrypting 
process in real time and observe its use of shared 
resources.

• [Tsunoo-Saito-Suzaki-Shigeri-Miyauchi 03] 
Cryptanalysis of DES implemented on computers 
with cache, CHES 2003, LNCS 2779, 62-76, 2003

• [Osvik-Shamir-Tromer 05] Cache Attacks and 
Countermeasures: the Case of AES, RSA CT 2006

• [Bernstein 05] Cache-timing attacks on AES
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Implementation attacks (13 May ‟08)

Debian-OpenSSL incident

• Weak key generation: 

only 32K keys

– easy to generate all private keys

– collisions

• Between 13-17 May: 

280 bad keys out of 40K 

(0.6%)

• Revocation problematic
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Implementation attacks

cold boot attack

• Why break cryptography? Go for the key, stupid!

• Data reminence in DRAMs
Lest We Remember: Cold Boot Attacks on Encryption Keys [Halderman-

Schoen-Heninger-Clarkson-Paul- Calandrino-Feldman- Appelbaum-

Felten‟08]

– Boot from USB device and dump RAM image

– Works for AES, RSA,…

– Products: BitLocker, FileVault, TrueCrypt, dm-crypt, loop-AES

5 

sec
30 

sec

60 

sec

5 

min
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Implementation attacks

cold boot attack (2)

• Countermeasures 

– Overwrite keys in memory

– Shut down rather than sleep/hibernate

– Limit boot options (network, USB)

– resilient exposure cryptography (AONT)

– physical protection of DRAM

– encrypt in the disk controller

– new architecture

• Ineffective: trusted computing as implemented today
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Some crypto libraries

• OpenSSL: http://www.openssl.org/

• Cryptlib: 
http://www.cs.auckland.ac.nz/~pgut001/cryptlib/

• SSLeay: http://www2.psy.uq.edu.au/~ftp/Crypto/

• IAIK Java: 
http://jce.iaik.tugraz.at/products/index.php

• COSIC crypto library (contact B. Preneel)

• See also 
http://www.ssh.fi/support/cryptography/online_r
esources/practical.html
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Novel applications of cryptography

• Whitebox crypto

• SPAM fighting
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Protection of software against 

whitebox attacks

• Software
• Confidential information

• Secret keys

• Proprietary code

• Software and content distribution

• White-box setting
• Complete accesss to implementation

• Decompilation, reverse engineering, …
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Protection of software against 

whitebox attacks

• “sandboxing”
protect host against malware

• malicious hosts
protect software against malicious 

hosts
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Techniques

• White-box cryptography
• Extra input and output coding of encryption 

• Code obfuscation
• Obfuscate code and program flow

• Other techniques:
• Integrity checks + error detection

 Tamper resistant software (TRS)

• Code encryption + „on-the-fly‟ decryption
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White Box Cryptography

• Mathematical technique to hide keys in code

• With:
• EK : encryption function, key K

• F : arbitrary input coding

• G : arbitrary output coding
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Pro and Cons

• Unique object code

– Choose F and G

– Integrate key

• Protect key 

– No function that 

computes EK for an 

arbitrary key K

• Flexible

• Fast updates

• Increased memory

– Tables for input and 
output coding and for 
function

• Increased execution 
time

• Security: very strong 
attack model

– Trade-off with 
performance

• Fast key update open 
problem
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Example

• DES
– 16-round Feistel

– 8 S-boxes

– 56-bit key

• White-box DES
– General structure

– 12 “T-boxes”

– Key built in code
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The SPAM problem: it is about 

economics, stupid

• list of 107-108 “good” names

• cost per message: ~10-5 €; total cost 100-1000 €

• hit ratio: 10-6 to 10-4: 10-10000 responses

• Cost to society

• Ruining e-mail as communication tool

• Time and attention

• ISP fees 

• Storage and bandwidth
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"The right to be left alone - the most 

comprehensive of rights, and the right 

most valued by civilized men."

- Supreme Court Justice Louis Brandeis

AND…
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Fighting SPAM

• Filtering

• Make sender pay

• Ephemeral email addresses

• Data/Sender Authentication
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Fighting SPAM (2)

• Filtering

 Everyone: text-based

 Brightmail: decoys; rules updates

 Microsoft Research: (seeded) trainable filters 

 SpamCloud: collaborative filtering

 SpamCop, Osirusoft, etc: IP addresses, proxies, …

• Make Sender Pay

 Computation (CPU and/or memory)

 Human attention 

 Cash, bonds, stamps (PennyBlack)
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Fighting SPAM (3)

• Ephemeral e-mail addresses

– E.g. SPA: Single Purpose Addresses

• Data/Sender authentication

 Sign all emails

 Sender Permitted From (SPF): whitelist mail senders

 Sign domain names (Yahoo‟s DomainKeys)

 Authenticated mail: AMTP (TLS)

Often bypass for friends on whitelist
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Filtering: limitations

• Still high cost if too late in the chain

• Spammers generate more sophisticated 

emails…

– "Daphnia blue-crested fish cattle, darkorange 

fountain moss, beaverwood educating, eyeblinking 

advancing, dulltuned amazons...." 

– FWD: Many On Stocks. Vali/u/m + V1codin+ ; 

V|@GRa + /Xanax/ ; Pnter.m.in ? Som|a|  muKPs
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Computational Approach

• If I don‟t know the sender:

– Prove sender spent 10 seconds CPU time, 

– just for me, and just for this message

• Checking proof by receiver:

– automatically in the background

– very efficient

• All unsolicited mail treated equally
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Point-to-Point Architecture

(Ideal Message Flow)

• Single-pass “send-and-forget”

• Can augment with helper to handle slow machines
• Can add post office / pricing authority to handle money 

payments
• Time mostly used as nonce for avoiding replays (cache tags, 

discard duplicates; time controls size of cache)

Sender client

S

Recipient client

R

m,  f(S,R,t,nonce)
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Economics

• 10 seconds CPU cost a few hundreds of a cent

• (80,000 s/day) / (10s/message) = 8,000 msgs/day

• Hotmail‟s billion daily spams:

– 125,000 CPUs

– Up front capital cost just for hardware: $150 million

• The spammers can’t afford it.
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Cryptographic Puzzles 

• Hard to compute; f(S,R,t,nonce) can‟t be amortized

• lots of work for the sender

• Easy to check “z = f(S,R,t,nonce)”

• little work for receiver

• Parameterized to scale with Moore's Law

• easy to exponentially increase computational cost, while 
barely increasing checking cost

• Can be based on (carefully) weakened signature 
schemes, hash collisions

• Can arrange a “shortcut” for post office
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Idea: replace CPU by memory

• CPU speeds vary widely across machines, but memory 
latencies vary much less (20-100 vs 2-6)
 33 MHz PDA vs. 3 GHz PC

• design a puzzle leading to a large number of cache 
misses

• Concrete schemes: [ABMW02] and [DGN03]
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Easy Functions  

[ABMW02] 

 

 

0  1  2  . . .             . . .                         . . .      2
n
-1 X0 

 Xk 

Xk-1 

• f: n bits to n bits, easy

• Given xk  range(f(k)), find a 
pre-image with certain 
properties 

• Hope: best solved by building 
table for f-1 and working back 
from xk

• Choose n=22 so f -1 fits in 
small memory, but not in 
cache

• Optimism: xk is root of tree of 
expected size k2
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Social Issues

• Who chooses f?

– One global f? Who sets the price?

– Autonomously chosen f‟s?

• How is f distributed (ultimately)?

– Global f built into all mail clients? (1-pass)

– Directory?  Query-Response? (3-pass)
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Technical Issues

• Distribution lists

• Awkward introductory period

– Old versions of mail programs; bounces

• Very slow/small-memory machines

– Can implement “post office” (CPU),  but: 

– Who gets to be the Post Office?  Trust?

• Cache Thrashing (memory-bound)

• The Subverters or Zombies
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Conclusions: cryptography

• Can only move and simplify your problems

• Solid results, but still relying on a large 
number of unproven assumptions and beliefs

• Not the bottleneck or problem in most 
security systems

• To paraphrase Laotse, you cannot create 
trust with cryptography, no matter how much 
cryptography you use -- Jon Callas.
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Conclusions (2): cryptography

• Leave it to the experts

• Do not do this at home

• Make sure you can upgrade

• Implementing it correctly is hard

• Secure computation very challenging and 
promising: reduce trust in individual building 
blocks
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Selected books on cryptology

 D. Stinson, Cryptography: Theory and Practice, CRC 
Press, 3rd Ed., 2005. Solid introduction, but only for the 
mathematically inclined. 

 A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, 
Handbook of Applied Cryptography, CRC Press, 
1997.  The bible of modern cryptography. Thorough and 
complete reference work – not suited as a first text book.  
Freely available at http://www.cacr.math.uwaterloo.ca/hac 

 N. Smart, Cryptography, An Introduction: 3rd Ed., 
2008. Solid and up to date but on the mathematical side. 
Freely available at http://www.cs.bris.ac.uk/~nigel/Crypto_Book/

 B. Schneier, Applied Cryptography, Wiley, 1996. 
Widely popular and very accessible – make sure you get the 
errata.

 Other authors: Johannes Buchmann, Serge Vaudenay
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